
The characteristics of photon and phonon standing waves in a periodic medium

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 227

(http://iopscience.iop.org/0953-8984/17/1/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 19:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/17/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) 227–234 doi:10.1088/0953-8984/17/1/021

The characteristics of photon and phonon standing
waves in a periodic medium

G Knuyt1,3 and M Nesládek1,2
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Abstract
The main characteristics of the spatial variation of the photon and phonon
wave fields at the band gap boundaries are analysed for a one-dimensional
medium with periodic optical or acoustic parameters. The derivations are based
on symmetry considerations and on analytical results derived from the basic
differential equation for the wave field. A simple relation is derived between the
band gap width and the derivative of the field intensity at the interface between
the regions of high and low wave velocity. The general field characteristics
are derived for some examples. Using the analysis a remarkable asymmetric
behaviour of the wave absorption near the Brillouin zone boundaries can be
explained in a straightforward way.

1. Introduction

In recent years a lot of research has been done on waves in media with periodic properties, both
for scientific and technical reasons. This can concern acoustic waves in so-called phononic
crystals (e.g. acoustic superlattices) or electromagnetic waves in photonic crystals. Just like
for electrons in a periodic potential, frequency gaps will be present [1–4] and near the band
edges interesting phenomena occur [5–9].

In this paper special attention will be paid to the explanation of the results of Kuzmiak et al
[10] where a periodic system was studied, consisting of thin metallic regions in combination
with non-dissipating regions. These authors found a remarkable behaviour of the absorption
coefficients and electromagnetic wave lifetimes for wavevectors near the zone boundaries.
These physical parameters showed asymmetric behaviour according to the frequency value
(larger or smaller values depending on the position of the frequency with respect to the band
gap). In order to explain results like that of Kuzmiak et al it is necessary not only to have a
good knowledge of the photonic (phononic) band structure, but also to have a clear physical
picture of the spatial variation of the (acoustic or electromagnetic) field for frequencies near the
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gap. A number of studies on one-dimensional periodic media have been done already [11–21],
some of them using the Kronig–Penney treatment [22, 23]. In the present paper we concentrate
our attention on the properties of the field near the band edges (the standing wave field). The
explanation of the results of Kuzmiak et al will be straightforward then.

2. The dispersion relation and spatial variation of the field

In our study of the propagation of electromagnetic or elastic waves, we start with the one-
dimensional wave equation (the Helmholtz equation; see e.g. [1])

c2(x)
d2U(x)

dx2
+ ω2U(x) = 0. (1)

The field U(x) represents the spatial dependence of e.g. an electric field component, or the
deviation of an atomic coordinate from its equilibrium value. c(x) is the local wave velocity
which is chosen as a piecewise constant function, and ω is the frequency. We adopt the
following notation. In regions I (layers of thickness d1) the velocity equals c1; for regions II
(thickness d2) the velocity is c2 with c2 < c1. Near the origin (x = 0) region I extends
from x = 0 to d1 and region II from x = −d2 to 0. The period for the function c(x) equals
d = d1 + d2.

Due to the periodicity of c2 in equation (1) the field U(x) is a Bloch-type function:
U(x + d) = exp(ikd)U(x) where k is the quasi-wavenumber. By expressing U(x) as a
linear combination of two exponentials in each region, and by demanding continuity for
U(x) and dU/dx at interface points, the field U(x) and the dispersion relation ω = ω(k)

can be determined by solving an eigenvalue problem. In order to obtain transparent results
we introduced dimensionless quantities α = c1/c2, β = d1/d2, ω∗ = ωd/〈c〉, x∗ = x/d
and k∗ = kd . The quantity 〈c〉 is a weighted mean wave velocity [24] defined by
〈c〉−1 = d1/c1d + d2/c2d . Explicit calculations lead to the dispersion relation

cos k∗ = cos ω∗ − 1

2

(1 − α)2

α

(
sin

βω∗

α + β

)(
sin

αω∗

α + β

)
. (2)

The explicit expressions for U(x) can be obtained in a straightforward way, but are rather
lengthy and will not be reproduced here. The main characteristics of U will become clear
using the methods explained in the following sections.

3. The behaviour of ω∗ and the band gaps

Because the rhs of equation (2) can run out of the interval [−1, 1], band gaps for ω∗ will
open at the centre and boundary of the first Brillouin zone (k∗ = 0,±π). Each gap can be
characterized by two boundary frequencies which we denote as ω∗

n− and ω∗
n+. n is the number

of the gap, and ω∗
n− and ω∗

n+ respectively the low and high ω∗ values at the gap boundaries.
The fields corresponding to these ω∗ will be denoted further as Un− and Un+. The successive
gaps (n = 1, 2, . . .) are attained for k∗ = nπ (extended zone scheme) and the frequency gaps
are situated near ω∗ ≈ nπ .

The band gap disappears when the second term in the rhs of equation (2) is zero. This
can occur in the trivial case α = 1, but also if one of the sine functions is zero. This condition
leads to the following possible zero-gap values for the β/α ratio: (β/α)zg = n′/(n −n′) where
n′ is an integer with 0 � n′ � n. In figure 1 the gap width for n = 3 is shown as a function of
β/α for α = 1.5. It disappears for β/α = 0, 1/2, 2 and ∞. Some results on the behaviour of
Un− and Un+ will be discussed further in relation to figure 1.
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Figure 1. The dimensionless band gap width as a function of the parameter β/α =
(d1/d2)(c1/c2)

−1 for the third band gap. Zero gap width occurs at β/α = (β/α)zg = 0, 1/2,
2 and ∞.

4. Analysis of the behaviour of the fields Un− and Un+

4.1. Periodicity, number of oscillations and parity

Because k∗ = nπ (modulo 2π) at the gap boundaries, the Bloch condition becomes
Un±(x + d) = (−1)nUn±(x). Hence for even n, Un± has period d , while for odd n only
a shift over 2d reproduces U (see e.g. the paper by de Sterke and Sipe on periodic media [25]).
U 2

n±(x) shows n oscillations over its period d . Because c2(x) in equation (1) is invariant
under reflection with respect to the points x = d1/2 and −d2/2, U(x) will be symmetric or
antisymmetric. This implies that the derivatives dU 2/dx at x = −d2 and 0 have opposite signs
but the same absolute value.

4.2. Particular behaviour of Un− versus Un+

Further properties of Un±(x) are derived by analytical considerations. Multiplication of
equation (1) with U(x) = Un±(x) and integration over an interval d leads to

ω2
n± = −

∫ d

x=0
c2(x)Un±(x)(d2Un±/dx2) dx (3)

where U was normalized according to
∫ d

x=0 U 2(x) dx = 1. In the case where c(x) is piecewise
constant and shows two discontinuities, partial integration of equation (3) leads to ω2

n± =
(c2

1 − c2
2)(dU 2

n±/dx)x=0 +
∫ d

x=0(dUn±/dx)2c2(x) dx . The continuity of U and dU/dx together
with the properties of U cited in section 4.1 were used. After subtracting the two equations for
the + and − cases one obtains ω2

n+ − ω2
n− = MC + SC. Here the main contribution (MC) and

secondary contribution (SC) are given by MC = (c2
1 − c2

2)[(dU 2
n+/dx)x=0 − (dU 2

n−/dx)x=0]

and SC = ∫ d
x=0 c2(x)[(dUn+/dx)2 − (dUn−/dx)2] dx . Because ωn+ > ωn− these expressions

indicate that (dU 2
n /dx)x=0 is positive for Un = Un+ and negative for Un = Un−, on

condition that the MC term dominates over the SC one. Numerical results indeed show
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that MC ≈ −2SC. The analytical proof goes as follows. The MC term can be transformed
into the same expression for the SC, but with the square bracket in the integral replaced by
(1/2)(d2U 2

n−/dx2 − d2U 2
n+/dx2).

Hence MC and SC can be compared by comparing their integrand. Now the functions
Un±(x) are approximately proportional to oscillating functions cos(k̄n x + θn±) with k̄n a mean
wavenumber. From the orthogonality of Un+ and Un− one derives that θn−−θn+ = π/2. Using
this equality and the cosine expressions for Un±, the integrands for MC and SC can be made
explicit, and the above relation between MC and SC is easily checked. Using the results for
MC and SC in ω2

n+ − ω2
n− leads then (for relatively small gap widths) to the following relation

between the band gap width and the derivative of the field intensity at the interface:

ωn+ − ωn− ≈ d(c2
1 − c2

2)

2πn〈c〉
(

dU 2
n+

dx

)
x=0

. (4)

Because the lhs of equation (4) is positive and c1 > c2, this equation directly illustrates the
well known tendency of the intensity U 2

n+ to concentrate in the high c region; the reverse will
be true for U 2

n−. A case in which the band gap (the lhs in equation (4)) is approximately zero
will be discussed further. All the above analytical results were checked numerically. The just
mentioned tendency for U 2

n+ corresponds to the specific behaviour of an electron conduction
band wavefunction in solids (see e.g. [26]).

4.3. The amplitude of Un± in the two regions

A still more complete picture for the behaviour of the field U can be obtained by considering its
amplitudes A. In region I e.g. it is defined by the exact expression UI(x) = AI cos(ωx/c1 +ϕI).
Because U and dU/dx have to be continuous at the interfaces, various relations between the
amplitudes can be derived. Combination of these relations easily leads to an exact equation
for the ratio of the amplitudes in regions I and II:

(AI/AII)
2 = 1 + (c1/ω)2(U ′

0/U0)
2

1 + (c2/ω)2(U ′
0/U0)2

(5)

where for simplicity U and dU/dx at x = 0 are denoted respectively as U0 and U ′
0.

4.4. Examples

In the previous sections a number of properties of the fields Un± and its intensities U 2
n± were

derived. We will not give a systematic description of the field and intensity behaviour for
various n, α and β values. On the contrary, some examples will illustrate how the above
properties can be combined into a clear picture for the field behaviour. In figures 2(a), (b) the
fields U1±(x) and their intensities are shown in the interval −d2 < x < d1 (−0.4 < x∗ < 0.6)

for α = β = 1.5. Because β/α is well distinct from the zero-gap values, the frequency gap is
relatively large, and so are the slopes of U 2 at the boundary between the two regions (x∗ = 0).
Like for arbitrary n, U 2

1− decreases when entering regions of higher c (going from negative to
positive x), and U 2

1+ increases there. Because n = 1 both functions show only one node and
one oscillation per period d . Therefore the mean value of U 2

1− in region II is larger than in
region I, although (using equation (5)) it can be shown that the field amplitude AII is smaller
than AI. This is specific to the n = 1 situation.

In figures 3(a), (b) the fields U3±(x) and their squares are shown for α = 1.5 and β = 3.1.
For these parameters the ratio β/α ≈ 2.07 is slightly larger than the zero-gap value 2.0 (see
figure 1). Because of equation (4), (dU 2

3+/dx)0 will be very small and positive, and both U 2
3±

will show extrema very near x = 0. Further, d1/d2 = β is somewhat larger than for the
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Figure 2. The dependence of U2
1− and U2

1+ ((a) and (b) respectively) on x∗ = x/d for α = β = 1.5.
Only the interval −d2 < x < d1 (−0.4 < x∗ < 0.6) is shown. The features of the curves are
described in detail in section 4.4.

zero-gap situation, so the boundary (x = 0) lies at the left of the extrema. The only possibility
is then that U 2

3+ has a maximum (antinode) and U 2
3− a minimum (node) for a very small positive

x value, in agreement with figures 3(a), (b). The U0 and U ′
0 values for the + and − fields can

easily be derived from the U 2± behaviour, and then equation (5) can be applied. The result is
that for the − field the ratio AI/AII equals a value c1/c2 larger than 1, while for the + field it
is exactly 1. This is clearly illustrated in figures 3(a), (b).

In a study on nonlinear periodic media using the envelope function approach, de Sterke
and Sipe [25] used a k·p method approximation in determining the eigenfunctions for the rapid
field fluctuations. They find that the eigenfunctions for the lower edge of the lowest stop gap
(n = 1) peak in the middle of the high refraction index (low c) material,while the eigenfunction
for the higher edge does the same in the low index material. This was indeed found above,
and also for higher n. The present treatment also gives information on the derivative of the
intensity at the interface in various situations, on the presence of nodes and on the ratio of the
field amplitudes in the two regions.
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n = 3 
 α = 1.5 
β / α  = 2.07 

x* = x / d 

-0.2 0.0 0.2 0.4 0.6 0.8

U
 3

 -
 (x

*)
  ,

  U
 3

 -
2  (

x*
) 

 (
a.

u.
) 

-2

-1

0

1

2

3

U 3 - 
2

(a)

U 3 -

n = 3 
 α = 1.5 
 β / α  = 2.07 

x* = x / d 

-0.2 0.0 0.2 0.4 0.6 0.8

U
 3

 +
 (x

*)
  ,

  U
 3

 +
 2  (

x*
) 

 (a
.u

.)
 

-2

-1

0

1

2

3

(b)

U 3 +

U 3 + 2 

Figure 3. The dependence of U2
3− and U2

3+ ((a) and (b) respectively) on x∗ = x/d for α = 1.5,
β = 3.1. The β/α value just exceeds the zero-gap value 2.0. The features of the curves are
described in detail in section 4.4.

5. Concluding remarks

The behaviour of the standing waves Un± in a periodic medium was inferred from a number of
analytical considerations. In particular, equation (4) relates the slope of the field intensity at the
boundary to the gap width, and equation (5) yields the amplitude ratio for the different regions.
In a few examples it was illustrated how the various results can be combined; it became clear
that the character of the field intensity can change substantially with the parameters describing
the medium. The intensities calculated above show pronounced extrema, the number of which
increases with the gap number, which is in agreement with the behaviour of the local density
of states (LDOS) as calculated by Moroz [19] using Green function techniques. Comparison
of the various examples discussed above suggests that the LDOS can seriously change the
character for varying n, or in cases of relatively small frequency gaps.

The analysis of the previous sections can be used in order to interpret remarkable results
found by Kuzmiak et al [10]. These authors have studied the photonic band structure in
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periodic systems consisting of metallic components (thin regions showing dissipation) in
combination with vacuum or a dielectric. They find a remarkable asymmetric behaviour of the
absorption coefficients and electromagnetic wave lifetimes for wavevectors near the Brillouin
zone boundaries. This asymmetry is represented by a decreasing absorption coefficient for
waves with frequencies near the lower band edge at the Brillouin zone boundary, and a
significant increase for waves with frequencies in the neighbourhood of the upper band edge
at the zone boundary. This can be understood from the above results. Because of the large
electronic density the relative dielectric constant for metals is smaller than 1 (plasma model),
and the metallic regions thus have the highest c. For the low frequency standing wave the field
amplitude will then decrease when entering the metallic regions. Because the latter are thin,
the field will show a node in the metallic region, and little dissipation will occur, leading indeed
to small absorption and a long wave lifetime. On the high frequency side, the field amplitude
will increase when entering both sides of the thin metallic layers, and the field amplitude will
show a local maximum. This indeed leads to a large absorption and a short wave lifetime.
This asymmetric absorption behaviour is one illustration of the influence of the characteristics
of the photon or phonon field on the physical properties of the periodic medium. The above
results make it clear that even small variations (e.g. of the ratio β/α) can substantially change
the field behaviour and hence the physical properties. Recently it was shown by a number of
authors [27–30] that it is indeed possible to vary the periodic medium characteristics, even in
a continuous way.
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